TECHNICAL CATALOG
FORMULA ${ }^{\text {TM }}$ UL
Low voltage molded case circuit breakers up to 250 A

FORMULA is a result of ABB SACE's

 long history of developing effective circuit breakers. It was developed to be simple, but amazes with its extreme quality and versatility.
Table of contents

004-005	Overview
$006-008$	Construction characteristics
$009-014$	Circuit breakers for power distribution
$0015-028$	Accessories
$029-030$	Technical information
$031-034$	Wiring diagrams
$035-048$	Approximate dimensions

FORMULA.

Simplicity and quality in a single product.

FORMULA is a result of ABB SACE's long history of developing effective circuit breakers. It was developed to be simple, but amazes with its extreme quality and versatility.

The highlights of the FORMULA line of molded case circuit breakers include:

- Quick and easy selection and ordering with few, but essential, versions of circuit breakers
- Multiple polarities, dedicated to various applications
- Accompanying accessory line
- Reduced circuit breaker depths

The FORMULA family consists of two frames, A1 and A2, which reach up to 100 A and 250 A respectively. Both frames are available in the fixed version with front terminals.

The protection trip unit has fixed thermal and magnetic threshold values for putting the circuit breaker into service more rapidly. A reduced number of part numbers simplifies selection and makes ordering easier. Installation is easy and the circuit breaker is ready for use immediately.

The easy and precise choice.

How simple and functional can a range of molded case circuit breakers be? By asking this elementary question, $A B B$ conceived the idea for this family of circuit breakers. The result is FORMULA, the perfect synthesis between ABB SACE's recognized quality, reliability and simplicity. Simple, with regard to installation, sizing and fitting of accessories.

Reducing dimensions without compromising performance and reliability is an ABB SACE trademark that helps with installation and increases the work space inside switchboards and panels. FORMULA's compact design is a great advantage, especially for OEMs, panel builders and installers.

Quality in all applications.

Quality is versatility. ABB offers both three-pole and two-pole versions up to 250 A , along with a single-pole version up to 100 A , opening the door to the most varied application fields.

Quality is compact overall dimensions. The FORMULA A1 and A2 depth of under 2.5" is one of the the lowest on the market up to 250 A .

Construction characteristics

General information

-

01 Double insulation
-
02 Positive operation
-
03 Installation positions
04 Test pushbutton

01

-
03

No nominal performance derating for use up to an altitude of 6562 ft . Above 6562 ft ., the properties of the atmosphere (composition of the air, dielectric strength, cooling power and pressure) change, have an impact on the main parameters that define the circuit breaker. The altitude table below gives the changes to the main performance parameters.

FORMULA circuit breakers can be used in ambient temperatures between $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ and stored in a room with atmospheric temperature between $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$.

All FORMULA circuit breakers are fitted with a test pushbutton, which allows the release test to be performed. This test must be carried out with the circuit breaker closed.

Weight

	A1 (Ibs.)	A2 (Ibs.)
Circuit breaker 1-pole	0.54	-
Circuit breaker 2-pole	1.04	1.61
Circuit breaker 3-pole	1.54	2.43

			$\mathbf{6 6 0 0} \mathbf{f t .}$		$\mathbf{8 5 0 0} \mathbf{f t .}$	$\mathbf{1 3 0 0 0} \mathbf{f t}$	
		A1	A2	A1	A2	A1	A2
Rated service voltage, Ue	(V)	240	240	228	228	192	192
Rated uninterrupted current	$\%$	100	100	99	99	96	96

Construction characteristics

Regulations and reference standards

$\overline{01}$

Conformity with standards

- Standards
- IEC 60947-2
- UL 489
- Directives
- EC directive: "Low voltage directives" (LVD) no. 2006/95/CE (in replacement of 73/23/CEE and subsequent amendments)
- EC directive: "Electromagnetic compatibility directive" (EMC) no. 89/336 EEC

Certification of conformity with the product standards is carried out in the ABB SACE test lab (accredited by SINAL - certificate No. 062/1997) in respect of the EN 45011 European Standard, by the Italian certification body ACAE (Association for Certification of Electrical Apparatus), member of the European LOVAG organization (Low Voltage Agreement Group) and by the Swedish certification body SEMKO belonging to the international IECEE organization.

The FORMULA series has a hologram on the front, obtained using special anti-forgery techniques, as a guarantee of the quality and genuineness of the circuit breaker as an ABB SACE product.

Company quality system

The ABB SACE quality system conforms with the following standards:

- ISO 9001 International standard
- EN ISO 9001 (equivalent) European standards
- UNI EN ISO 9001 (equivalent) Italian standards

The ABB SACE quality system attained its first certification with the RINA certification body in 1990.

Environmental management system, social responsibility and ethics

Attention to protection of the environment is a priority commitment for ABB SACE. Confirmation of this is the realization of an environmental management system certified by RINA in conformity with the International ISO14001 Standard. ABB SACE was the first industry in the electromechanical sector in Italy to obtain this recognition. In 1999, the environmental management system was integrated with the occupational health and safety management system according to the OHSAS 18001 standard and later, in 2005, with the SA 8000 (social accountability 8000) standard, committing itself to respect of business ethics and working conditions.

The commitment to environmental protection is evident through:

- Selection of materials, processes and packaging that optimize the true environmental impact of the product
- Use of recyclable materials
- Voluntary compliance with the RoHS directive

Construction characteristics

Identification of the FORMULA circuit breakers

The characteristics of the circuit breakers are given on the label on the front of the circuit breaker.

1. Name of the circuit breaker and performance level
2. In: rated uninterrupted current*
3. Uimp: rated impulse withstand voltage*
4. Ui: insulation voltage*
5. Ics: rated short circuit service breaking capacity*
6. Icu: rated ultimate short circuit breaking capacity*
7. Ue: rated service voltage*
8. Symbol of isolation behavior*
9. Reference standard and file number
10. Serial number
11. Anti-forgery
12. Test pushbutton
13. CE Marking
14. Lug information
15. UL interrupting ratings

Circuit breakers for power distribution

General characteristics

The FORMULA circuit breakers from 15 A to 250 A consist of the interruption component together with the trip unit and can be installed:

- Directly on the back plate of cubicles
- On a DIN rail

They are characterized by:

- Fixed version
- Polarity: 1-pole, 2-pole, 3-pole
- Maximum breaking capacity of 25 kA at 240 V AC
- Fixed thermal-magnetic trip unit (TMF) for protection of networks in alternating current
- A single depth of 2.36 "
- Standard front terminals

FORMULA A1

011-pole
 02 2-pole
 03 3-pole
 04 2-pole
 -
 05 3-pole

${ }_{01}$

${ }_{02}$

${ }_{03}$

FORMULA A2

Circuit breakers for power distribution

Thermal-magnetic trip unit

The thermal-magnetic trip units TMF, with fixed thermal and magnetic threshold, are generally used in power distribution plants. They allow protection against overloads due to the thermal device and protection against short circuit due to the magnetic device:

- Thermal protection (L): fixed threshold $\operatorname{I} 1=1 \times 1 / \mathrm{n}$, with long inverse time trip curve
- Magnetic protection (I): fixed threshold $13=10 x \ln$, with instantaneous trip curve

Fixed thermal-magnetic trip unit TMF
An example with FORMULA A2 $\operatorname{In}=125$ A

-
FORMULA A1 with trip unit TMF

TMF												
L	$\ln (\mathrm{A})$	15	20	25	30	40	50	60	70	80	90	100
$11=1 \times 1 n$	Neutral (A) - 100\%	15	20	25	30	40	50	60	70	80	90	100
1	13 (A)	$300{ }^{1)}$	$300{ }^{1)}$	$300{ }^{1)}$	$300{ }^{1)}$	400	500	600	700	800	900	1000
$13=10 x \mathrm{ln}$	Neutral (A) - 100\%	300	300	300	600	400	500	600	700	800	900	1000

1) Single- and two-pole versions have an I3 (3) of 400 .

-

FORMULA A2 with trip unit TMF

TMF							
L	$\ln (\mathrm{A})$	125	150	175	200	225	250
$11=1 \times 1 n$	Neutral (A) - 100\%	125	150	175	200	225	250
1	13 (A)	1250	1500	1750	2000	2250	2500
$13=10 x \mathrm{ln}$	Neutral (A) - 100\%	1250	1500	1750	2000	2250	2500

Circuit breakers for power distribution

Technical data

		A1					A2
Frame size	A				100		250
Rated current, In	A				100		125-250
Poles	No.				2, 3		2, 3
Rated service voltage,	V			240	3p)		240 (2p, 3p)
Ue (AC) 50-60 Hz (DC)				(1p),	,3p)		250 (2p,3p)
Versions					ixed		Fixed
Performance Level			A		N	A	N
Pole	No.	1	2, 3	1	2, 3	2, 3	2, 3
Rated ultimate short circuit breaking capacity, Icu							
Interrupting rating at $240 \mathrm{~V} 50-60 \mathrm{~Hz}$ (AC)	kA	10	10	18	25	10	25
Interrupting rating at 125 V (DC) 1-pole (in 2012)	kA	5	-	10	-	-	-
Interrupting rating at 250 V (DC) 2-pole in series (2p, 3p) (in 2012)	kA	-	5	-	10	10	25
Reference standard					489		UL 489
Isolation behavior					Yes		Yes
Mounting onto DIN rail				DIN	022		DIN EN 50022
Dimensions (width \times depth \times height)							
1-pole	in.			$1.00 \times$	5.12		-
2-pole	in.			. $00 \times$	5.12		$2.76 \times 2.36 \times 5.91$
3 -pole	in.			$3.00 \times$	5.12		$4.13 \times 2.36 \times 5.91$
Weight							
1-pole	lbs.				0.54		-
2-pole	lbs.				1.04		1.61
3-pole	lbs.				1.54		2.43
Trip unit - Thermal-magnetic TMF					Yes		Yes

Circuit breakers for power distribution

Part number scheme

Circuit breakers for power distribution

A1 ordering information

A1 100 A — Fixed (F) 1-pole - Front terminals (F), thermal-magnetic trip unit - TMF Icu (240 V)

In	13	A (10 kA)	N (18 kA)
15	400	A1A015TW-1	A1N015TW-1
20	400	A1A020TW-1	A1N020TW-1
25	400	A1A025TW-1	A1N025TW-1
30	400	A1A030TW-1	A1N030TW-1
40	400	A1A040TW-1	A1N040TW-1
50	500	A1A050TW-1	A1N050TW-1
60	600	A1A060TW-1	A1N060TW-1
70	700	A1A070TW-1	A1N070TW-1
80	800	A1A080TW-1	A1N080TW-1
90	900	A1A090TW-1	A1N090TW-1
100	1000	A1A100TW-1	A1N100TW-1

A1 100 A — Fixed (F) 2-pole — Front terminals (F), thermal-magnetic trip unit — TMF Icu (240 V)

In	$\mathbf{1 3}$	$\mathbf{A}(\mathbf{1 0} \mathbf{k A})$	$\mathbf{N (2 5 ~ k A)}$
15	400	A1A015TW-2	A1NO15TW-2
20	400	A1A020TW-2	A1NO20TW-2
25	400	A1A025TW-2	A1NO25TW-2
30	400	A1A030TW-2	A1NO30TW-2
40	400	A1A040TW-2	A1NO40TW-2
50	500	A1A050TW-2	A1NO50TW-2
60	600	A1A060TW-2	A1NO60TW-2
70	700	A1A070TW-2	A1NO70TW-2
80	800	A1A080TW-2	A1NO80TW-2
90	900	A1A090TW-2	A1NO90TW-2
100	1000	A1A100TW-2	A1N100TW-2

A1 100 A — Fixed (F) 3-pole - Front terminals (F), thermal-magnetic trip unit — TMF Icu (240 V)

In	$\mathbf{1 3}$	A (10 kA)	N (25 $\mathbf{~ k A)}$
15	300	A1A015TW	A1N015TW
20	300	A1A020TW	A1NO20TW
25	300	A1A025TW	A1NO25TW
30	300	A1A030TW	A1NO30TW
40	400	A1A040TW	A1NO40TW
50	500	A1A050TW	A1NO50TW
60	600	A1A060TW	A1NO60TW
70	700	A1A070TW	A1NO70TW
80	800	A1A080TW	A1NO80TW
90	900	A1A090TW	A1NO90TW
100	1000	A1A100TW	A1N100TW

Circuit breakers for power distribution

A2 ordering information

A2 250 A — Fixed (F) 2-pole - Front terminals (F), thermal-magnetic trip unit - TMF Icu (240 V)

In	I3	A (10 kA)	N (25 kA)
125	1250	A2A125TW-2	A2N125TW-2
150	1500	A2A150TW-2	A2N150TW-2
175	1750	A2A175TW-2	A2N175TW-2
200	2000	A2A200TW-2	A2N200TW-2
225	2250	A2A225TW-2	A2N225TW-2
250	2500	A2A250TW-2	A2N250TW-2

A2 250 A — Fixed (F) 3-pole — Front terminals (F), thermal-magnetic trip unit — TMF Icu (240 V)

In	$\mathbf{1 3}$	A (10 kA)	N (25 kA)
125	1250	A2A125TW	A2N125TW
150	1500	A2A150TW	A2N150TW
175	1750	A2A175TW	A2N175TW
200	2000	A2A200TW	A2N200TW
225	2250	A2A225TW	A2N225TW
250	2500	A2A250TW	A2N250TW

Accessories

Panorama of accessories

Caption

1. EF: extended front terminals ${ }^{1}$

2 ES: extended spread terminals ${ }^{1}$

3 FC CuAI: front terminals for copper and aluminum cables

4 PS: phase separators

5 HTC: high terminal cover

6 LTC: low terminal cover

7 Sealable screw ${ }^{1}$
8 AUX-C/AUE-C: auxiliary contact

9 SOR-C/UVR-C: service releases

10 DIN: DIN rail ${ }^{1}$
12 PLL: padlocks
14 RHD: rotary

15 RHE: extended rotary handle

16 Key lock 1
${ }^{1}$ IEC rated only. Not UL rated.

FORMULA A1-A2
2-pole accessories

Accessories

Panorama of the accessories

Caption
1 EF: extended front terminals ${ }^{1}$

2 ES: extended spread terminals ${ }^{1}$

3 FC CuAl: front terminals for copper and aluminum cables

4 PS: phase separators

5 HTC: high terminal cover

6 LTC: low terminal cover
(7) Sealable screw ${ }^{1}$

8 AUX-C/AUE-C: auxiliary contact

9 SOR-C/UVR-C: service releases

10 DIN: DIN rail ${ }^{1}$
12 PLL: padlocks
$14 \begin{aligned} & \text { RHD: rotary } \\ & \text { handle direct }\end{aligned}$
15 RHE: extended
rotary handle
16 Key lock 1
${ }^{1}$ IEC rated only.
Not UL rated.

Accessories

Mechanical accessories

```
01 Terminal F
-
02 Terminal F
with cable lug
-
0 3 \text { Terminal F}
with busbar
-
04 Terminal EF
05 Terminal EF
with busbar
```

01 Terminal F
-
Terminal F with cable lug

03 Terminal F with busbar

04 Terminal EF
05 Terminal EF with busbar

Connection terminals

The connection terminals allow the circuit breaker to be connected in the most suitable way for the desired application. Various termination options are available in both UL and IEC rated formats. The front terminals allow cables or busbars to be connected directly from the front of the circuit breaker (cable lugs are not included). Different types of terminals can be combined (for example, one type for the line and a different type for the load side).

The standard version of the circuit breaker is supplied with front terminals (F). Alternative terminal options are sold separately.

	Busbar dimensions (mm/in.)					Cable lug (mm/in.)		Tightening torques				Terminal covers (mm/in.)						Separators (mm/in.)	
Type	Pole	W	H	D	\varnothing	W	\varnothing					$\begin{array}{r} 2 / \\ 0.07 \end{array}$	$\begin{aligned} & 7.5 / \\ & 0.29 \end{aligned}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 60 / \\ 2.36 \end{array}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 80 / \\ 3.14 \end{array}$	$\begin{array}{r} 100 / \\ 3.93 \end{array}$	$\begin{array}{r} 200 / \\ 7.87 \end{array}$
A1	123	15/0.59	6/0.23	5/0.19	6.5/0.25	15/0.59	6.5/0.25	-	-	M6	4	-	-	R	-	S (1)	-	R	-
A2	23	25/0.98	8/0.31	6/0.23	8.5/0.33	24/0.94	8.5/0.33	-	-	M8	8	-	-	-	R	-	S (1)	R	-

		Busbar dimensions (mm/in.)			Cable lug (mm/in.)		Tightening torques				Terminal covers (mm/in.)				Separators (mm/in.)			
Type	Pole	W	D	\varnothing	W	\varnothing					$\begin{array}{r} 2 / \\ 0.07 \end{array}$	$\begin{aligned} & 7.5 / \\ & 0.29 \end{aligned}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 60 / \\ 2.36 \end{array}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 80 / \\ 3.14 \end{array}$	$\begin{array}{r} 100 / \\ 3.93 \end{array}$	$\begin{array}{r} 200 / \\ 7.87 \end{array}$
A1	123	15/0.59	5/0.19	8.5/0.33	15/0.59	8.5/0.33	M6	3	M8	9	-	-	R	-	S	-	R	-
A2	23	25/0.98	6/0.23	9/0.35	NA	NA	M8	8	M8	9	-	-	-	R	-	(1)	R	-

[^0]
Accessories

Mechanical accessories

```
01 Terminal ES
-
02 Terminal ES
with cable lug
O3 Terminal ES
with busbar
-
04 Terminal FCCuAI
-44 Terminal FCCuAI
with cable
```


Front extended spread terminal - ES (IEC only)

		Busbar dimensions (mm/in.)			Cable lug (mm/in.)		Tightening torques				Terminal covers (mm/in.)				Separators (mm/in.)			
Type	Pole	W	D	\varnothing	W	\varnothing				or bar	$\begin{array}{r} 2 / \\ 0.07 \end{array}$	$\begin{aligned} & 7.5 / \\ & 0.29 \end{aligned}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 60 / \\ 2.36 \end{array}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 80 / \\ 3.14 \end{array}$	$\begin{array}{r} 100 / \\ 3.93 \end{array}$	$\begin{array}{r} 200 / \\ 7.87 \end{array}$
A1	23	20/0.78	6/0.23	8.5/0.33	20/0.78	8.5/0.33	M6	3	M8	9	-	-	-	-	-	-	S	-
A2	23	30/1.18	4/0.15	10.5/0.41	10.5/0.41	NA	M8	8	M10	18	-	-	-	-	-	-	S	-

Front terminals for copper aluminum cables - FC CuAI

Type Assembly		Pole	Cable (mm/in.) Rigid	Tightening torques		Length of Cable stripping (mm/in.)	Terminal covers (mm/in.)						Separators (mm/in.)		
		Terminal		Cable or busbar	$\begin{array}{r} 2 / \\ 0.07 \end{array}$		$\begin{aligned} & 7.5 / \\ & 0.29 \end{aligned}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 60 / \\ 2.36 \end{array}$	$\begin{array}{r} 50 / \\ 1.96 \end{array}$	$\begin{array}{r} 80 / \\ 3.14 \end{array}$	$\begin{array}{r} 100 / \\ 3.93 \end{array}$	$\begin{array}{r} 200 / \\ 7.87 \end{array}$		
A1	Internal $1^{(1)}$		$2^{(1)} 3$	14-2 AWG	M6 $35 \mathrm{lb}-\mathrm{in}$	$\begin{array}{r} 14-10 \\ \text { AWG; } \\ 20 \mathrm{lb}-\mathrm{in} \\ 8 \mathrm{AWG} ; \\ 35 \mathrm{lb}-\mathrm{in} \\ 6-2 \\ \text { AWG; } \\ 75 \mathrm{lb}-\mathrm{in} \end{array}$	16/0.62	-	$\mathrm{S}^{(1)}$	R	-	-	-	-	-
A1	Internal $1^{(1)}$	$2^{(1)} 3$	4-1 AWG	M6 35 lb -in	- $75 \mathrm{lb}-\mathrm{in}$	16/0.62	-	$S^{(1)}$	R	-	-	-	-	-	
A2	Internal	23	1 AWG300 kcmil	M8135 lb-in	-135 lb-in	20/0.78	-	$\mathrm{S}^{(1)}$	-	R	-	-	-	-	
A2	Internal	23	$\begin{array}{r} 300-350 \\ \mathrm{kcmil} \end{array}$	M8135 lb-in	- 177 lb -in	22/0.86	-	$S^{(1)}$	-	R	-	-	-	-	

[^1]
Accessories

Mechanical accessories
-
Front terminals

	$\mathbf{1}$ piece	2 pieces	3 pieces	4 pieces	
KIT F A1	KA1F-1	KA1F-2	KA1F-3	KA1F-4	
KIT F A2	-	KA2F-2	KA2F-3	KA1F-6	

-

Front extended terminals (IEC only)

| | $\mathbf{1}$ piece | 2 pieces | 3 pieces | 4 pieces |
| :--- | ---: | ---: | ---: | ---: | ---: |
| KIT EF A1 | KA1EF-1 | KA1EF-2 | KA1EF-3 | KA1EF-4 |
| KIT EF A2 | - | KA2EF-2 | KA2EF-3 | KA2EF-4 |

-

Front extended spread terminals (IEC only)

	$\mathbf{1}$ piece	2 pieces	3 pieces	4 pieces	
KIT ES A1	KA1ES-1	KA1ES-2	KA1ES-3	KA1ES-4	
KIT ES A2	-	KA2ES-2	KA2ES-3	KA1ES-6	

-

Front terminals for copper aluminum cables - FC CuAI

	$\mathbf{1}$ piece	2 pieces	3 pieces	4 pieces	
KIT FC CuAI A1 80 A	KA1080-1	KA1080-2	KA1080-3	KA1080-4	KA1080-6
KIT FC CuAI A1 100 A	KA1100-1	KA1100-2	KA1100-3	KA1100-4	KA1100-6
KIT FC CuAI A2; 250 A Cu cables and 225A AI cables	-	KA2225-2	KA2225-3	KA2225-4	KA2225-6
KIT FC CuAI A2 250 A	-				

Accessories

Mechanical accessories

-

01 High terminal cover (HTC)

22 Low terminal
cover (LTC)
-
03 Sealable screw -
04 Phase separators (PS)

01

02

03

04

Terminal covers, phase separators

 and sealable screwsBoth high (HTC) and low (LTC) terminal covers are applied to the circuit breaker to avoid accidental contact with live parts and, in this way, to ensure protection against direct contact. The terminal covers are pre-punched for knock-out on the front to facilitate installation of busbars and/or cables, providing correct insulation.

The phase separator partitions (PS) allow the insulation characteristics between phases to be increased near the connections. They are mounted on the front by inserting them into the corresponding slots and can be applied either prior to or when the circuit breaker is already installed. The phase separators are incompatible with both the high and the low terminal covers.

The lead sealing kit includes screws, which, when used, prevent removal of the terminal covers and/ or circuit breaker fronts, acting as a protection against direct contact and tampering. The screws can be locked with a wire and sealed with lead.

The compulsory and optional phase separators and terminal covers needed for correct installation and insulation of the circuit breaker are indicated in the "connection terminals" section of the accessories chapter and in the "overall dimension" chapter.

Terminal covers

	A1	A2
HTC 3-pole, 2 pieces	KA1HTC-3	KA2HTC-3
LTC 3-pole, 2 pieces	KA1LTC-3	KA2LTC-3
Sealable screws for terminal covers	KA2SSW-T	-
Sealable screws for front	KA2SSW-F	-

Phase separators

		A1		A2
	2 pieces	4 pieces	2 pieces	4 pieces
PB 50 mm	KA1PBL-2	KA1PBL-3	-	-
PB 80 mm	-	-	KA2PBL-2	KA2PBL-3
PB 100 mm	KA2PBH-2	KA2PBH-3	KA2PBH-2	KA2PBH-3
Sealable screws for front (IEC only)	KA2SSW-F	-	-	-

Sealable screw onto the circuit breaker front

Sealable screw onto the terminal covers

Accessories

Mechanical accessories

$\overline{01}$ Direct handle (RHD)
$\overline{02}$ Extended handle (RHE)

$\overline{01}$

Rotary handle operating mechanism

A rotary handle operating mechanism is a control device that allows the circuit breaker to be comfortably operated by means of a rotary handle.

There are two types of handles:

- Direct (RHD): installed directly on the front of the circuit breaker
- Extended (RHE): installed through the switchboard door; RHE interacts with the circuit breaker behind the door by means of a transmission rod

The rotary handles, in the direct and extended version, are available for the three-pole A1 and A2 circuit breakers both in the standard version (grey) and in the emergency version (red on a yellow background).

Information/settings visible and accessible to the user:

- Circuit breaker nameplate
- Indication of the 3 positions: open (OFF), closed (ON), tripped (TRIP)
- Access to the test pushbutton of the rotary handle release (only RHD)

Rotary handle operating mechanisms can be ordered:

- By using the pre-configured "kit" code (RHD and RHE)
- By ordering the following three devices (only RHE):
- Rotary handle on door of the compartment: standard (RHE_H) or emergency (RHE_H_EM)
- Transmission rod of 500 mm (RHE_S); the minimum and maximum distances between the mounting surface and the door are $62.5 \mathrm{~mm} / 2.46 \mathrm{in}$. and $479.5 \mathrm{~mm} / 18.88 \mathrm{in}$.
- Base for circuit breaker (RHE_B)

It is possible to accessorize the handles with a vast range of key locks and padlocks. Each rotary handle takes up to 3 padlocks ($7 \mathrm{~mm} / 0.28 \mathrm{in}$. \varnothing stem). (See the "locks" paragraph in the accessories chapter.)

The direct and extended rotary handles allow use of the early auxiliary contacts on closing in order to supply the undervoltage release with power early in relation to closing of the main circuit breaker contacts (see the "early auxiliary contacts" paragraph in the accessories chapter).

Rotary handle component

	A1-A2
RHD A1-A2 STAND. DIRECT	KA2RHD
RHD_EM A1-A2 EMER. DIRECT	KA2RHDEM
RHE A1-A2 STAND. RETURNED	KA2RHE
RHE_EM A1-A2 EMER. RETURNED	KA2RHEEM
RHE_B A1-A2 SIDEB.R.DIST.ADJ.ROT.HAND	KA2RHE-B
RHE_S A1-A2 ROD R.D.ADJ.ROT.HAN	KA2RHE-S
RHE_H A1-A2 HANDLE R.D.ADJ.ROT.HAN	KA2RHE-H
RHE_H A1-A2 HAND.EME.R.D.ADJ.ROT.HAN	KA2RHE-HEM

Accessories

Mechanical accessories

-

01 Fixed padlock in open position (PLL)

02 Fixed padlock in open and closed position (PLL)

03 Removable padlock in open position (PLL)

Locks

Locks are devices (with padlocks or keys) which prevent the circuit breaker closing or opening operation. They can be applied:

- Directly onto the front of the circuit breaker
- Onto the direct/extended rotary handle operating mechanism
- Onto the front for lever operating mechanisms

Locking the circuit breaker in the open position ensures isolation of the circuit according to the IEC 60947-2 Standard. Locking in closed position does not prevent release of the mechanism following a fault.

$\overline{03}$

Type of lock		Circuit breaker	Polarity	Optional/ standard supply	CB lock position	Type of lock	Withdraw ability of key
Circuit breaker	PLL - Fixed padlock	A1-A2	3	Optional	Open- closed	Padlocks - max. 3 padlocks \varnothing stem 7 mm (not supplied)	-
	PLL - Fixed padlock	A1-A2	3	Optional	Open	Padlocks - max. 3 padlocks \varnothing stem 7 mm (not supplied)	-
	PLL - Removable padlock	A1-A2	$1^{22}, 2,3$	Optional	Open	Padlocks - max. 3 padlocks \varnothing stem 7 mm (not supplied)	-
Rotary handle direct and extended	Padlock in open position	A1-A2	3	Standard	Open	Padlocks - max. 3 padlocks \varnothing stem 7 mm (not supplied)	-
	Compartment door lock	A1-A2	3	Standard	Closed	Door lock ${ }^{(1)}$	-
	RHL-S Lock with key in open pos.	A1-A2	3	Optional	Open	Same Ronis keys	Open
	RHL-D Lock with key in open pos.	A1-A2	3	Optional	Open	Different Ronis keys	Open
	RHL-D Lock with key in open and closed position	A1-A2	3	Optional	Openclosed	Different Ronis keys	Open/closed

(1) Function can be completely excluded by the customer during assembly of the handle (A1 and A2).
(2) A2 is not available in a single-pole version.

Accessories

Mechanical accessories

 with fixed padlock in open position

02 Circuit breaker with fixed padlock in open and closed position -
03 Key lock for direct handle

04 Key lock for extended handle

01

-

Padlocks for lever operating mechanism of the circuit breaker

| | A1-A2 |
| :--- | ---: | ---: |
| PLL — Padlocks removable in open position | KA2LDOR |
| PLL — Padlocks fixed in open position | KA2LDO |
| PLL — Padlocks fixed in open and closed position | KA2LD |

Key lock on handle and front for lever operating mechanism (IEC only)

	A1-A2
RHL-D Lock in open position, different keys	KA2RHLO
RHL-S Lock in open position, same keys type A	KA2RHLO-A
RHL-S Lock in open position, same keys type B	KA2RHLO-B
RHL-S Lock in open position, same keys type C	KA2RHLO-C
RHL-S Lock in open position, same keys type D	KA2RHLO-D
RHL-D Lock in open/closed position, different keys	KA2RHL

Fixed padlock in open/closed position

Fixed padlock in open position

Fixed padlock in open/closed position

Removable padlock in open position

Accessories

Mechanical accessories

Bracket for mounting on DIN rail
The bracket, applied on the back of the circuit breakers, allows installation on a standardized DIN EN 50022 rail so as to simplify mounting in standard installations.

The bracket for mounting on DIN rail can be used with all the circuit breakers in the FORMULA family, with the exception of A3:

- A1 in 1p, 2p, 3p version
- A2 in $2 p, 3 p$ version

Bracket for mounting on DIN rail (IEC only, not labeled for UL)

	A1-A2
Bracket for 1p, 2p, 3p	KA2DIN

$\overline{01}$

Diagrams

Bracket for DIN rail for 3p circuit breaker

Accessories

Electrical accessories

01 Cabled service release SOR-C and UVR-C

Service releases

The cabled shunt opening release SOR-C allows for opening of the circuit breaker by means of a non-permanent electrical control. Operation of the release is guaranteed for a voltage between 70\% and 110% of the power supply rated voltage value Un, in both alternating and direct current. It is fitted with an integrated limit contact for cutting off the power supply.

The cabled undervoltage release UVR-C ensures opening of the circuit breaker for lack/lowering of the release power supply voltage. Opening is guaranteed when the voltage is between 70% and 35% of Un. After tripping, the circuit breaker can be closed again starting from a voltage higher than 85% of Un. With the undervoltage release de-energized, it is impossible to close the circuit breaker and/or the main contacts.

The service releases SOR-C and UVR-C for Formula can be mounted as alternatives to each other and are only available in the cabled version (20AWB cable section $/ 0.5 \mathrm{~mm}^{2}$), with 1 m long cables. For A1 and A2, screw-less, snap-on assembly is carried out in the special internal compartment of the circuit breaker. In the following circuit breakers:

- Two-pole (A1, A2), the SOR-C or UVR-C can be mounted as an alternative in the right-hand slot
- Three-pole (A1, A2), the SOR-C or UVR-C can be mounted as an alternative in the left-hand slot

SOR-C - Electrical characteristics

	Absorbed power on inrush	
SOR-C		
A1-A2		
Versions	AC (VA)	DC (W)
12 V DC	$50-65$	50
$24-30 ~ V ~ A C / D C ~$	60	$50-65$
$48-60$ V AC/DC	50	60
$110-127$ V AC - 110-125 V DC	$50-60$	50
$220-240$ V AC -220-250 V DC	$50-60$	

—
UVR-C - Electrical characteristics

	Absorbed power during normal operation	
UVR-C		
A1-A2		
Version		DC (W)
$24-30$ V AC/DC	1.5	1.5
48 V AC/DC	1	1
60 V AC/DC	1	1
$110-127$ V AC $-110-125$ V DC	2	2
$220-240$ V AC $-220-250$ V DC	2.5	2.5

Accessories

Electrical accessories

Shunt opening release - SOR-C

	A1-A2
SOR-C 12 V DC	KA2S9
SOR-C 24-30 V AC/DC	KA2S8
SOR-C 48-60 V AC/DC	KA2S7
SOR-C $110-127$ V AC - 110-125 V DC	KA2S4
SOR-C $220-240$ V AC $-220-250$ V DC	KA2S2

Undervoltage release - UVR-C

	A1-A2
UVR-C 12 V DC	KA2U9
UVR-C $24-30$ V AC/DC	KA2U8
UVR-C 48 V AC/DC	KA2U7
UVR-C 60 V AC/DC	KA2U5
UVR-C $110-127$ V AC - 110-125 V DC	KA2U4
UVR-C $220-240$ V AC $-220-250$ V DC	KA2U2

Diagrams

Two-pole circuit breaker

Three-pole circuit breaker

Accessories

Electrical accessories

01 Cabled auxiliary contact

$\overline{01}$

Auxiliary contacts for electrical signals

The auxiliary contacts allow information about the state of the circuit breaker to be available through an electronic signal to another apparatus.

The signals available are as follows:

- Form C (open/closed): signaling the position of the circuit breaker power contacts (Q)
- Bell alarm (release trip): signaling circuit breaker opening due to tripping of the thermal-magnetic or electronic trip unit (due to overload or short circuit), of the opening of the shunt opening release or undervoltage release (SOR-C or UVR-C) or by activation of the test pushbutton (SY)

Auxiliary contacts AUX-C Q, AUX-C SY

The auxiliary contacts for A1 and A2 snap into the special slot of the circuit breaker without the of use any screws. All the auxiliary contacts are supplied in the cabled version (20 AWG cable section $/ 0.5 \mathrm{~mm}^{2}$), with loose cables 1 m long.

An AUX-C contact is also available as a spare part, and it can be used as Q or SY according to the slot of the circuit breaker in which it is inserted.

AUX-C - Electrical characteristics

Category of use (IEC 60947-5-1)	Voltage (V)	Current (A)
AC-12/AC-13/AC-14	125	6
AC-15	125	5
AC-12/AC-13/AC-14	250	6
AC-15	250	4
DC-12	110	0.5
DC-14	110	0.05
DC-12	250	0.3
CC-14	250	0.03

Two-pole circuit breaker

Three-pole circuit breaker

Accessories

Electrical accessories

Auxiliary contacts - AUX-C

		A1		A2	
	2-pole	3-pole	2-pole	3-pole	
Cabled version (numbered cables)					
AUX-C 1Q+1SY 250 V AC/DC	KA2AS-2	KA2AS	KA2AS		
AUX-C 2Q+1SY 250 V A2 2p	-	KA2AS2	KA2AS2-2	KA2AS2	
AUX-C 1Q+1SY 24 V DC	KA2ASAU-2	KA2ASAU	K	-	KA2ASAU
AUX-C 2Q+1SY 24 V DC	-	KA2AS2AU	KA2AS2AU-2	KA2AS2AU	

Cabled version (spare parts) (IEC only)
AUX-C 250 V 1 CONT. A1-A2 KA2ASSP

Early auxiliary contacts AUE-C (IEC only)

The cabled early auxiliary contacts (AUE-C) are normally open contacts, which allow the undervoltage release to be supplied in advance prior to the closing of the main contacts in conformity with the IEC 60204-1, VDE 0113 standards.

It is possible to insert up to two early auxiliary contacts on closing inside the direct and extended rotary handle operating mechanism for three-pole circuit breakers. The contacts, supplied in the cabled version with cables 1 m long (20 AWG cable section/ $0.5 \mathrm{~mm}^{2}$), must be ordered in combination with an undervoltage release.
-
AUE-C - Electrical characteristics

		Current (A)
Voltage (V)	AC	DC
125 DC	-	0.5
250 AC/DC	12	0.3

-

Early auxiliary contacts - AUE-C (IEC only)

	A1-A2
AUE-C	KA2RH-EM

Temperature performance

All FORMULA circuit breakers can be used under the following environmental conditions:

- $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$: range of temperature where the circuit breaker is installed
- $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$: range of temperature where the circuit breaker is stored

To determine tripping time using time/ current curves, use It ${ }^{\circ} \mathrm{C}$ values indicated in the tables below.
-
FORMULA A1 circuit breaker with thermal-magnetic trip unit TMF

In (A)	$\mathbf{1 0}{ }^{\circ} \mathbf{C}$	$\mathbf{2 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}{ }^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
5	6.5	6.1	5.8	5.4	5	4.8	4.5
10	12.9	12.2	11.5	10.8	10	9.6	9.0
15	19.4	18.4	17.3	16.2	15	14.4	13.5
20	24.6	23.5	22.4	21.2	20	19.2	18.0
25	29.2	28.2	27.2	25.9	25	24.0	22.5
30	36.8	35.3	33.6	31.8	30	28.8	27.0
40	46.7	45.2	43.5	41.5	40	38.3	36.0
50	58.3	56.5	54.3	51.9	50	47.9	45.0
60	70.0	67.8	65.2	62.2	60	57.5	54.0
70	81.7	79.1	76.1	72.6	70	67.1	63.0
80	91.0	88.5	85.6	82.1	80	76.7	72.0
90	102.4	99.6	96.3	92.4	90	86.3	81.0
100	116.7	113.0	108.7	103.7	100	95.9	90.0

-

FORMULA A2 circuit breaker with thermal-magnetic trip unit TMF

In (A)	$\mathbf{1 0}{ }^{\circ} \mathbf{C}$	$\mathbf{2 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 0}^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
125	161	153	144	135	125	114	102
150	184	176	168	159	150	138	126
160	196	188	179	169	160	148	135
175	215	206	196	185	175	160	144
200	246	235	224	212	200	183	165
225	290	276	260	243	225	205	184
250	323	306	289	270	250	228	204

Note: Temperature ratings and performances above are per IEC standard test results.

Dissipated power

For each circuit breaker, the table below gives the dissipated power values for a single-pole circuit breaker. The maximum total dissipated power of
a two-pole or three-pole circuit breaker used at $50 / 60 \mathrm{~Hz}$ is equal to the dissipated power for the single-pole multiplied by the number of poles.

Power (with pole) TMF

$\mathbf{I n}(\mathbf{A})$	$\mathbf{A 1}$	$\mathbf{A 2}$
15	2.5	-
20	3	-
25	3	-
30	4	-
40	4.5	-
50	5.5	-
60	6	-
70	8	-
80	9	-
90	7	-
100	8	-
125	-	-
150	-	7
175	-	8
200	-	10
225	-	12
250	-	14

Note: Dissipated power values above are per IEC standard test results.

Information for reading and graphic symbols

State of operation represented

The diagrams are shown under the following conditions:

- Circuit breaker open
- Circuits without voltage
- Trip unit not tripped

Incompatibility A1 A2

Accessory circuits cannot be supplied with singlepole circuit breakers. The applications indicated in figures $1-2-6$, which are supplied as an alternative, can be supplied with two-pole circuit breakers. All the applications indicated in the figures can be supplied with three-pole circuit breakers. Figures 1-2-3-4 are provided as an alternative. Figures 5-6 are provided as an alternative. See pages 33-34.

Graphic symbols (IEC 60617 and CEI 3-14 to 3-26 standards)

\square	Thermal effect	Make contact
$\}$	Electromagnetic effect	Break contact
- - -	Mechanical connection (link)	Change-over break before make contact
E---	Operated by pushing	
F---	Operated by turning	Circuit breaker with automatic release
-	Connection of conductors	Operating device (general symbol)
-	Terminal	
-	Plug and socket (male and female)	
1	Resistor (general symbol)	Instantaneous overcurrent or rate-of-rise relay
T		Overcurrent relay with inverse long time-lag characteristic
\pm	Current transformer	

Wiring diagrams for circuit breakers

Operating status A1 A2

L

Single-pole circuit breaker ${ }^{1 \text {) }}$ with thermal-magnetic trip unit 1) A1 only

N L

Two-pole circuit breaker with thermal-magnetic trip unit

L3 L2 L1

Three-pole circuit breaker with thermal-magnetic trip unit

Caption

Q = Main circuit breaker

Electrical accessories

Shunt opening and undervoltage releases A1 A2

Figure:

1) Shunt opening release (SOR-C or YO)
2) Undervoltage release (UVR-C or YU)
3) Instantaneous undervoltage release with an early contact in series (AUE-C+UVR-C)
4) Instantaneous undervoltage release with two early contacts in series (AUE-C+UVR-C)

Notes

B) The undervoltage release is supplied for power supply branched on the supply side of the circuit breaker or from an independent source: circuit breaker closing is only allowed with the release energized (the lock on closing is made mechanically).
C) The $S 4 / 1$ and $S 4 / 2$ contacts shown in figures $3-4$ open the circuit with circuit breaker open and close it when a manual closing command is given by means of the rotary handle in accordance with the standards regarding machine tools (closing does not take place in any case if the undervoltage release is not supplied).
F) Additional external undervoltage resistor supplied at 250 V DC

Electrical accessories

Auxiliary contacts A1 A2

Figure:
5) Two changeover contacts for electrical signaling of circuit breaker open/closed and one changeover contact for signaling circuit breaker in tripped position due to thermal-magnetic trip unit or SOR-C or UVR-C intervention (2Q+1SY)
6) One changeover contact for electrical signaling of circuit breaker open/closed and one changeover contact for signaling circuit breaker in tripped position due to thermal-magnetic trip unit or SOR-C or UVR-C intervention (1Q+1SY)

Caption
Q/1, 2
Contact for electrical signaling circuit breaker open due to trip of the thermal-magnetic trip unit YO (SOR-C), YU (UVR-C) (tripped position)
V1 = Circuit breaker applications
V4 = Indicative apparatus and connections for control and signaling, outside the circuit breaker
XV = Terminal boards of the applications

Approximate dimensions

A1 - Circuit breaker and terminals

3-pole 2-pole 1-pole

Distance between compartment door and back of switchboard	A (mm/in.)	
Without flange	1-, 2- and 3-pole	$69 / 2.72$
	1 -, 2- and 3-pole	$61 / 2.40$

The circuit breaker installed at:

- $A=69 \mathrm{~mm} / 2.72 \mathrm{in}$. has the face around the operating lever extending from the compartment door.
- $A=61 \mathrm{~mm} / 2.40 \mathrm{in}$. has the face around the operating lever and steel with construction characteristics extending from the compartment door.

Mounting onto DIN 50022 rail

Approximate dimensions

A1 - Circuit breaker and terminals

Drilling templates for support sheet

Drilling templates for compartment door

$A=69 \mathrm{~mm} / 2.72 \mathrm{in}$. 1- and 2-pole

$A=61 \mathrm{~mm} / 2.40 \mathrm{in}$.
2-pole

$A=69 \mathrm{~mm} / 2.72 \mathrm{in}$.
3-pole

Dimensions shown are in inches (mm).

Approximate dimensions

A1 - Circuit breaker and terminals

F Terminals

EF Terminals

3-pole

1-pole

Caption
(1) 50 mm insulating barriers between the terminals (compulsory) not supplied with EF terminals kit, but with the circuit breaker in base version
(2)

Top terminal covers with IP40 degree
of protection (on request)
(3) Front extended terminals

Approximate dimensions

A1 - Circuit breaker and terminals

ES Terminals

Approximate dimensions

A1 - Circuit breaker and terminals

FC CuAl 14-2 AWG Terminals

3-pole

1- and 2-pole

3-pole

1- and 2-pole

1- and 2-pole

1- and 2-pole

	A mm/in)	B (mm/in.)	C (mm/in.)	
Without flange	$69 / 2.72$	$33 / 1.30$	$66 / 2.60$	1-pole
	$69 / 2.72$	$58 / 2.28$	$91 / 3.58$	2-pole
	$61^{*} / 2.40^{*}$	$33 / 1.30$	$66 / 2.60$	1-pole
$61^{*} / 2.40^{*}$	$58 / 2.28$	$91 / 3.58$	2-pole	

[^2]
Caption

(3) Bottom terminal covers with IP40 degree of protection (compulsory)
(4) FC CuAl 14-2 AWG terminals
(6) 50 mm insulating barriers between the terminals (compulsory) not supplied with FC CuAl terminals kit, but with the circuit breaker in base version
(7) Compartment door drilling template and mounting insulation (provided by customer)
(8) Compulsory internal 1-pole and 2-pole insulation plates (provided by customer)

Approximate dimensions

A1 - Accessories

Rotary handle operating mechanism on circuit breaker and compartment door drilling template (RHD)

Rotary handle operating mechanism on compartment door and compartment door drilling template (RHE)

Caption
(1) Transmission group
(2) Extended rotary handle operating mechanism
(4) Template for drilling compartment with extended rotary handle

Approximate dimensions

A2 - Circuit breaker and terminals

The circuit breaker installed at

- $A=69 \mathrm{~mm} / 2.72 \mathrm{in}$. has the face around the operating lever extending from the compartment door
- $A=61 \mathrm{~mm} / 2.40 \mathrm{in}$. has the face around the operating lever and steel with construction characteristics extending from the compartment door.

Mounting onto DIN 50022 rail

Approximate dimensions

A2 - Circuit breaker and terminals

Drilling templates for support sheet

Compartment door drilling templates

$A=69 \mathrm{~mm} / 2.72 \mathrm{in}$. 2 - and 3 -pole

$A=61 \mathrm{~mm} / 2.40 \mathrm{in}$.
2-pole

$\mathrm{A}=61 \mathrm{~mm} / 2.40 \mathrm{in}$.
3-pole

Approximate dimensions

A2 - Circuit breaker and terminals

F Terminals

Caption
(1) 80 mm insulating barriers between the terminals (compulsory) supplied

EF Terminals

(1) 80 mm insulating barriers between the terminals (compulsory) not supplied with EF terminals kit, but with the circuit breaker in base versionTop terminal covers with IP40 degree of protection (on request)
(3) Front extended terminals

Caption

[^3]
Approximate dimensions

A2 - Circuit breaker and terminals

ES Terminals

Approximate dimensions

A2 - Circuit breaker and terminals

	A (mm/in)	
Without flange	$69 / 2.72$	2-pole
	$61 / 2.40$	2-pole

Caption

(3) Terminal covers (compulsory)
(5) Terminals FC CuAl $300 \mathrm{kcmil}-350 \mathrm{kcmil}$
(6) 80 mm insulating barriers between the terminals (compulsory) not supplied with FC CuAl terminals kit, but with the circuit breaker in base version
(8) Compulsory internal insulation plates (provided by customer) max. $1 \mathrm{~mm} / 0.039$ in. thick

Approximate dimensions

A2 - Circuit breaker and terminals

FC CuAl 1 AWG-300 kcmil terminals

3-pole

2-pole

3-pole

2-pole

2-pole

	A (mm/in.)	
Without flange	$69 / 2.72$	2-pole
	$61 / 2.40$	2-pole

Caption
(3) Terminal covers (compulsory)
(4) Terminals FC CuAl 1 AWG- 300 kcmil
(6) 80 mm insulating barriers between the terminals (compulsory) not supplied with FC CuAl terminals kit, but with the circuit breaker in base version
(8) Compulsory internal insulation plates (provided by customer) max. $1 \mathrm{~mm} / 0.039$ in. thick

Approximate dimensions

A2-Accessories

Rotary handle operating mechanism on compartment door and compartment door drilling template (RHD)

Rotary handle operating mechanism on circuit breaker and compartment door drilling template (RHE)

Approximate dimensions

Minimum insulation distances

Minimum insulation distances for installation in cubicles

	A (mm/in.)	B (mm/in.)	C (mm/in.)
A1 - 1p, 2p, 3p	$50 / 1.97$	$50 / 1.97$	$50 / 1.97$
A2 - 2p, 3p	$50 / 1.97$	$50 / 1.97$	$50 / 1.97$

-

Minimum center distance between two side by side circuit breakers

| | Circuit breaker width (mm/in.) | | | Center distance I (mm/in.) | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 1-pole | 2-pole | 3-pole | 1-pole | 2-pole | 3-pole |
| A1 | $25.4 / 1.00$ | $50.8 / 2.00$ | $76.2 / 3.00$ | $25.4 / 1.00$ | $50.8 / 2.00$ | $76.2 / 3.00$ |
| A2 | - | $70 / 2.76$ | $105 / 4.13$ | $36 / 1.42$ | $70 / 2.76$ | $105 / 4.13$ |

—
Minimum center distance between two stacked circuit breakers

	H (mm/in.)
A1	$80 / 3.15$
A2	$400 / 15.75$

Caption
(1) Connection not insulated
(2) Insulated cable
(3) Cable terminal
-
Notes

Additional information

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Inc. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts is forbidden without prior written
consent of $A B B \operatorname{Inc}$.

ABB Inc.
Electrification business
860 Ridge Lake Blvd.
Memphis, TN 38120
United States

Customer Service
800-816-7809
7:00 a.m.-5:30 p.m., CST, Monday-Friday
elec_custserv@tnb.com
Technical Support
888-385-1221, Option 1
7:00 a.m.-5:00 p.m., CST, Monday-Friday
lvps.support@us.abb.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Inc. does not accept any responsibility whatsoever for potential errors or possible lack of
information in

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB Inc

[^0]: (1) In EF terminal kit, the phase separators are not provided, but for a correct installation, it is necessary to use the phase separators already provided with the circuit breaker base.

[^1]: (1) Terminal covers are not supplied for 1 p and $2 p$. The use of phase separators, supplied with the standard circuit breaker, and the insulating of switchboard door are mandatory.

[^2]: * Distance only possible with insulation plate max. $1 \mathrm{~mm} / 0.04 \mathrm{in}$. thick

[^3]: 3-pole

